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Abstract. Moleculai dynamic computer simulations of a two-dimensional Lennard-Jones liquid. 
along several isotherms, have been carried out to search for a distinct transition from a 
compressed liquid to an amorphous solid. The dynamics of the transition is examined in terms of 
tagged-particle van Hove correlation functions, for times up to 600 ps. The onset of localization 
and the transition to non-ergodicity occur simultaneously and abruptly within a very nmow 
range of density. Funher analysis of the data on the intermediate scattering function indicate a 
good fit to a stretched exponential with an exponent 0 equal to 0.62 and that this exponent is 
nearly independent of temperature. Thus, for the time scales investigated by this simulation, it 
is concluded that the transition observed is a glass transition. 

1. Introduction 

In three-dimensional liquids, a sharp transition from ergodic to non-ergodic behaviour 
is predicted by mode-coupling theories 111 and is labelled as an ‘ideal’ glass transition. 
Dynamically, this transition is signalled by a structural mest, or, in other words, a decay 
to a non-zero value, at very long times, of density correlation functions. However, both in 
experiments and in computer simulation, activated processes blur this transition and restore 
ergodicity at sufficiently long times. Molecular dynamic (MO) simulations on Lennard-Jones 
fluids [Z, 31 point to the existence of such a transition. A system is ergodic if, for a given 
time interval, the time-averaged and ensembleaveraged quantities yield the same results. 
As the glass transition is approached, this time interval increases rapidly and becomes 
longer than the MD observational time. Nevertheless, evidence from MD simulations [4,5] 
indicates the onset of localization and the loss of ergodicity occurring in a narrow range of 
temperature (or equivalently density) and it is suggested that this may be a universal feature 
(independent of the precise inter-molecular potential) of glass-forming substances. Light- 
scattering experiments on colloidal systems [6] confirm the onset of localization occurring 
over a narrow range of density. 

Even though there exists a substantial amount of MD simulation research [7,8] and 
some experimental research [9] on two-dimensional systems, the nature of freezing and 
melting in such systems is still a subject of some debate and almost nothing has been done 
on the question of the existence of a glassy state. Even with the difficulty of producing 
experimentally a true two-dimensional liquid, this problem is of conceptual interest and 
can be clarified only through computer simulations. Two-dimensional systems pose unique 
problems: for example,.the existence of a glassy state requiring the self-diffusion coefficient 
going to zero. However, it is known that the diffusion coefficient, as defined by the 
Green-Kubo time integral of the velocity autoconelation function, does not exist in two- 
dimensions. Because of this, localization and long-range crystalline order, in the .strictest 
sense, cannot exist in two dimensions. One could analyse the ‘long time’ behaviour of an 
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effective diffusion coefficient, defined as the slope of the mean-square displacement, to look 
for indications of a long-living metastable glass state and even possibly of a liquid-glass 
transition, but the very nature of an MD simulation limits one in terms of observational times. 
Thus we can only draw conjectures on the existence of glassy states in two dimensions. 

Nevertheless, it is clearly of interest to study whether and how localization and non- 
ergodicity occur in two dimensions and whether dimensionality affects the universality of 
these phenomena. We can investigate, through MD simulations distinctive and possibly 
unique structural and dynamical features associated with the transition region of non- 
ergodicity, reached by compressing a simple liquid at equilibrium. In this way, we are 
systematically simulating equilibrium and non-equilibrium properties of various metastable 
states as the fluid progresses from a normal liquid state to a disordered amorphous state. 
By resorting to compression at a constant temperature, we more nearly approximate 
experimental situations. In a previous paper [lo], our MD results on compressed two- 
dimensional Lennard-Jones liquids suggested a transition, signalled by changes in the pair 
distribution function and by a structural slowing down in density correlation functions at 
times of the order of tens of picoseconds. In this paper, we explore this transition in more 
detail, studying the density dependence of the pair distribution function g(r), the van Hove 
self-correlation function in r-space Gs(r, t) ,  its Fourier transform in q-space &(q, t )  and 
the non-Gaussian parameter A(r), and develop diagnostic statements regarding the onset 
of localization and non-ergodicity. Our results indicate quite an abrupt and discontinuous 
change in the behaviour of these structural and dynamic quantities as a function of density. 
This can be interpreted as defining the supercooledkompressed liquid-amorphous solid 
boundary in the temperature-density phase diagram. The results for the intermediate self- 
scattering function F,(q, r) have been analysed in terms of the Kohlrausch-Williams-Watts 
( K W )  1111 form of the correlation function. This is expressed as a stretched exponential, 
exp[-(t/r)~]. Mode-coupling theories indicate such a stretching of the spectrum near the 
glass transition, with 0 < ,3 c 1. 

Section 2 gives the details of the computer simulation and in section 3 we present the 
results for various static and dynamic correlation functions. Conclusions are presented in 
section 4. 

2. Molecular dynamics experiment 

The molecular dynamic computer simulations were carried out for a system of N (= 242) 
particles of mass m interacting with the Lennard-Jones (U) potential 

u(r) = 4e[(u/r)”- (u/r16]. (1) 
The particles were confined to a square box of length L = a where n* = nu2 
is the dimensionless density. The potential was cut off at half the box length, which does 
not pose any problems as this is at least 60. Periodic boundary conditions were imposed 
in the usual fashion. Other dimensionless units used in this paper are distance r* = r/u, 
wave vector q* = qu,  time t’ = t / r  where t2 = mu2/48e and temperature T* = kBTJe. 
Newton’s equations of motion were integrated using the Verlet algorithm. The temperature 
was controlled by re-scaling the particle velocities every 50 time steps and equilibrium 
was considered to be achieved if the temperature drift was within 0.005 of the required 
temperature, when scaling was turned off. Initiatly, equilibration was achieved after a run 
extending for about lo4 time steps, and after establishing an equilibrium configuration, the 
MD run was carried out for lo5 time steps. The time step was chosen to be At* = 0.032, 
corresponding to about s, using argon U parameters. The position vector r(t)  and 
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velocity vector v(r) for these time steps were stored to facilitate evaluation of the correlation 
functions. 

The temperature was kept constant at T* = 0.50, close to the triple-point temperature 
of 0.43, and the system was compressed from a density of n* = 0.79 (the hiple-point 
density is 0.77) to a density of 0.85 in steps of 0.01. At this temperature, it is expected 
that thermal motions would not contribute significantly and thus the onset of crystallization 
can be avoided. The compression to the next higher density was carried out by scaling 
all the particle positions by an appropriate factor that takes into account the decreased box 
length. Effects of system size were investigated in our previous paper [lo], wherein it was 
found that errors with 242 pmicles were insignificant. To see the effects of temperature, 
the MD simulations was repeated for three other isotherms, T* = 0.40 (which is below the 
triple-point temperature), 0.60 and 0.70. 

3. Results 

Though we have calculated and analysed the static correlation functions g ( r )  and the 
dynamic quantities A@), G&, f) and F,(q, t ) ,  for a number of density states along all 
four isotherms, only the isotherm T* = 0.50 will be discussed here. The behaviours at 
other isotherms are strikingly similar. We have evaluated and analysed the pair distribution 
function (PDF) g(r)  to see whether there are any static diagnostics of a transition. Previous 
MD studies [I21 of g o )  have established the onset of freezing to be around n* = 0.79 
at this temperature. g ( r )  varies quite smoothly over the range of densities investigated. 
The second peak just starts to exhibit a shoulder at n* = 0.79 and develops a split second 
peak at n* = 0.82. Rather than looking at features of g ( r )  to define the transition, we 
look at a ratio involving the PDFs. In analyses of three-dimensional fluids, an empirical 
PDF parameter R = g~,/gma, where g,, and g ~ "  are the magnitudes of the first-shell 
maximum and the first minimum following this maximum, has been used to define the onset 
of freezing [13] and the liquid-glass transition [14]. This is plotted in figure 1 as a function 
of density. A discontinuous change in slope is seen to occur at n' rr 0.83. This then 
could be taken as signalling a transition from a compressed liquid to an amorphous solid. 
Such a change in slope for the PDF parameter has been noted in computer simulations of 
three-dimensional liquids and used to define the glass transition [14]. As we shall see later, 
other dynamical quantities also show a discontinuous behaviour at this density, strongly 
suggesting the existence of a  glass^ transition. 

It has been suggested [I51 that the onset of a constant non-zero value, at long times, of 
the non-Gaussian parameter A @ ) ,  defined as 

(2) 
can be considered as an order parameter for the glass transition. Here the numerator is 
the mean quadric displacement and the denominator is the square of the mean square 
displacement. In figure 2, A( t )  is plotted as a function of time for n* = 0.81, 0.82, 0.83 and 
0.85. We note that while A( t )  goes to zero reasonably quickly after achieving a maximum 
for the first two lower densities, there is an abrupt change in its behaviour at n* = 0.83. 
The time scale for decay has increased quite dramatically as density is increased marginally 
from 0.82 to 0.83. The long-time decay does not seem to change appreciably on further 
compression. This analysis again shows a transition at n* N 0.83. 

The phenomenon of localization can best be studied by looking at the space-time 
behaviour of the self-part G$(r, t )  of the density correlation function, defined as 

(3) 

A(r) = ( [ ~ ( t )  - T(o)I~)/~(ITo) - T(o)I*)* - 1 

1 "  
G , ( ~ , ~ ) = N C ( [ T ; ( ~ ) - T ; ( O ) - T ] )  

1 
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Figure 1. PDF parameter R (= 
~ m i , , / $ ~ d  as a function of density n*, 
along the isotherm T' = 0.50. 
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Figure 2. Non-Gaussian 
parameter A(t) as a function 
of I' for n* = 0.81,0.82,0.83 
and 0.85 along the isotherm 
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provides a detailed description of the motion of individual particles. In a normal liquid or a 
slightly compressed liquid, G&, t )  should go over reasonably rapidly to the hydrodynamic 
limit 

Gs(r, t )  N (1/4xDt)  exp(-rZ/4Dt) (4) 
where D is to be interpreted, in two dimensions, as an effective diffusion coefficient, 
obtained from the slope of the mean-square displacement at sufficiently long times. Figure 3 
shows plots of P(r, f) = r%,(r, t ) ,  at specific densities, as a function of r* and at various 
times. The times chosen are f*  = 205,410,615 and 820, with the largest t* corresponding 
to about 250 ps, using argon w parameters. 2nrG,(r, t)  yields the distribution of particles 
that have moved a distance r in time t .  At the compressed liquid density of 0.79, the 
peak of P(r, f) moves to the right quickly and the hydrodynamic limit, shown by crosses, is 
reproduced quite accurately for t' N 820. Further compression to 0.82 shows a qualitatively 
similar behaviour, though the single-particle motion has slowed down significantly and it 
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takes longer to reach the hydrodynamic limit. However a further small change in density to 
0.83 brings about an abrupt and a dramatic change in the behaviour of P(r,  t ) .  The position 
of the mean peak is now  independent of time, even for the longest time investigated, 
implying localization. The amplitude and area of the main peak decrease slowly with time 
and a side peak at r Y U develops. The behaviour at higher density is very similar. 

The above analysis indicates a clear and abrupt transition from ‘liquid-like’ motion to 
‘solid-lie’ motion of particles and that the transition occurs in a very narrow range of 
density. The density at which this transition takes place coincides with that observed for 
other properties discussed earlier. 

We note that for n* > 0.83, the main peak of P(r, f) does not change with time, at least 
for the observational MD times. This implies a frozen but disordered structure, akin to a 
glassy state. The formation of a side peak, at distances comparable to interatomic separation, 
seems to indicate the emergence of a ‘hopping’ process in an otherwise translational single 
particle dynamics. In this region then, the system is in a frozen, disordered structure where 
most atoms vibrate around fixed equilibrium positions, but there are occasional individual 
or correlated jumps to other potential energy minima. Such a hypothesis was put forward 
more than 20 years ago [XI. 

From the position of the frozen main peak. we can come to some conclusions regarding 
Lindemann ratio, L = where U is the root-mean-square displacement of a particle 
from its equilibrium position is a crystal and d is the nearest-neighbour distance, which 
we will take to b e  the position of the first peak of the pair distribution function g ( r ) .  In 
three-dimensional crystals, the peak of P(r, t )  is related to U, which is related to the Debye- 
Waller factor, exp(-2W). In two dimensions, it can be shown that this factor is exactly 
zero. This then implies that U is infinite and therefore long-range crystalline order can never 
really exist in two dimensions. However since the divergence is of a logarithmic type and 
hence very slow, one can still relate U to the peak of P(r,  t )  for times available in a typical 
MD simulation. Previous study 1101 has shown that the ‘long-time’ behaviour of F&, f )  

at localization can be well represented by a Gaussian in q and that the product of the half 
width and the root-mean-square displacement is approximately constant. This implies that 
we can assume a Debye-Waller form 

(5) 

(6) 

It is evident from this equation that (uz) is the second moment of G&, t )  and further that it is 
related to the position of the frozen peak of rG&, t). We thus obtain U 5 = r,/& 
where r,,, is the position of the frozen main peak of P(r, f). The value of the Lindemann 
ratio L, for n’ = 0.83 and 0.85, is approximately 0.16, comparable to its three-dimensional 
value. So if this is to be judged as a criterion for a glass transition, we see that this 
criterion is in agreement with the Lindemann melting criterion and that dimensionality has 
little effect on these criteria. It is also of interest to study the intermediate self-scattering 
function F,(q, t ) .  which is the Fourier transform of GJr, t ) :  

2 2 ’  &(q, = large) = exp(-q ( U  )) 

Gs(r, t )  = (1/4x(uz))  exp(-r2/4(u2)). 

in two dimensions also. This yields, on Fourier transformation, 

(7) 

This correlation function, in modecoupling theories in three dimensions, shows an abrupt 
change from ergodic to non-ergodic behaviour at the ‘ideal’ glass transition. This is signalled 
by a q-dependent non-zero limit of F,(q, t )  as I -+ 00, or, in other words, a structural 
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Figure 4. Time decay of lhe intermediate self-scattering function F,(q.t) for q L* 90 at n* = 
0.19, 0.81. 0.82 0.83 and 0.85.aiong the isothem T' = 0.50. The lower curves correspond to 
lower densitis. 

arrest. Activated processes, which are ignored in an ideal glass transition, will tend to 

In figure 4, MD results for F&, t )  for a value of q close to 40, the position of the main 
peak of the static structure factor S(q) ,  are plotted for n* = 0.79, 0.81, 0.82, 0.83 and 0.85. 
The lower curves correspond to lower densities. I* = 2000 corresponds to about 6M1 ps in 
argon and we must bear in mind that in a normal liquid, the time scales of decay are about 
two orders of magnitude less. It is seen from this figure that there is a distinct change in the 
decay pattern of F,(q, t )  when the density is changed marginally from 0.82 to 0.83. There 
is a change of about two orders of magnitude.in the decay constant. However, complete 
structural arrest does not seem to have set in. Even though there is a localization at this 
density, as indicated by the frozen main peak of ?G&, c), jump diffusion, as indicated by 
the amplitude of its second peak, provides a slow mechanism for structural relaxation. 

One of the major features related to glass transition is the stretching of the relaxation 
phenomena 1171. At or very near a glass transition, extremely slow structural relaxations are 
observed in the density correlation function and they are of a characteristic non-exponential 
type. They have been found to fit the KWW stretched exponential, exp[-(t/t)a], with 
0 < B < 1. In figure 5(a), we have plotted F&, i), for 4 N 40. at T* = 0.50 and n* 
= 0.83, with a solid curve and a best-fit stretched exponential curve with a dashed curve. 
The value of ,9 is about 0.62, which is quite close to the threedimensional U value of 0.68 
[17]. In figure 5(b) and (c), we have plotted the same curves for T* = 0.40 (n" = 0.81) and 
0.60 (n* = 0.85), with the same value of p to see whether the exponent is independent of 
temperature. It is seen that the fit is extremely good. This evidence points to this transition 
being a glass transition. 

Based on the above analysis, the state specified by T* = 0.50 and n' = 0.83 defines the 
compressed liquid-amorphous solid phase boundary, which, for the observational times of 

restore ergcdicity at very long times. . .  
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Figure 5. Time decay of the intermediate self-scattering function F,(q. t) for q 2 40 (solid 
curve) and a stretched exponential fit exp[-(t/r)fl]. with B = 0.62 (dashed curve) for (0) n* = 
0.83, T' = 0.90; (b)  n* = 0.81, T' = 0.40: (c) n* = 0.85, T' = 0.60. 
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our computer simulation, can also be defined as the glass transition line. MD calculations of 
all of the above quantities, at temperatures of T* = 0.40,0.60 and 0.70, indicate very similar 
behaviour as a function of density and figure 6 shows the transition boundary, indicated by 
a dashed line, in the (T*, n*) phase diagram of a two-dimensional U fluid. The freezing 
line and the melting line shown in the figure are taken tiom [IS]. 

4. Conclusions 

In this paper 'we have presented MD computer simulation results for a two-dimensional 
system interacting with an w potential in tbe vicinity of the glass transition density, if one 
were to exist in two-dimensions. We have computed several quantities pertaining to single- 
particle motion, namely, the PDF the non-Gaussian parameter and the self-part of the van 
Hove density correlation function in both r-space and q-space. All of the above quantities 
display a marked transition in their behaviour at the same density of n* n. 0.83 (at T* = 
OSO), indicating an abrupt change in the nature of the particle dynamics at this density. The 
non-Gaussian parameter AO), has a very short decay time below this density and a decay 
time about two orders of magnitude greater beyond this density. The peak of rG&, t )  
decays differently below and above this critical density. For densities less than 0.83, there 
is a single peak that moves to larger r and becomes broader with increasing time, while for 
densities equal to or greater than 0.83, it exhibits a double-peak structure, with a large main 
peak whose position is nearly frozen. This implies a strong localizationof particles, at least 
for time scales probed by our MD simulation. The scattering function F&, t )  displays a 
severe structural slowing down at this crossover density. 

i 

C5 

a 
Figure 6. Phase diagram of a ZD 
U system indicating glass transition, 
shown by the dashed line. 

c , ~  ca 0 s  a3 
De"*". 

The important question through is, what does this transition represent? From the phase 
diagram of a two-dimensional U fluid [18], it is known that, at T* = 0.50, a density of n* 
= 0.78 represents a normal liquid and an n* = 0.80 represents a compressed liquid, and that 
the transition from a normal liquid to a compressed liquid is smooth and featureless when 
the above properties are analysed 1111. However, what we see here is an abrupt change 
in their behaviours, at n' = 0.83. It appears as though we are in the vicinity of a glass 
transition. 

One of the principal signatures of the existence of a glass transition is the non- 
exponential long-time decay of the density correlation function. The extremely slow decay 
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has been found to it the KWW stretched exponential decay. Analysis of our data on the 
density self-correlation function indicates that the spectrum can indeed be fitted with a 
stretched exponential with an exponent @ of 0.62, which does not seem to be sensitive to 
temperature change. In addition, analysis of previous data [lo] has shown that the Lamb- 
Mossbauer factor, IF&, t = large)], for the density self-correlation function can be fitted 
very well by a Gaussian distribution, and the Debye-Waller factor, [ F ( q ,  f =large)], for the 
density correlation function seems to oscillate in phase with S(q) ,  the static structure factor. 
Thus a wide variety of analyses of our data clearly point to the existence of a glass transition 
in two dimensions, at least for time scales investigated in our computer simulations, 
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